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Audience and Prerequisites

Audience:

@ These notes were prepared for Kenan Flagler Business School’s
Daytime MBA program

@ The setting is a 14 session course

@ These notes serve as reference materials to complement our in-class
work using computational tools

Prerequisites:
@ Some knowledge of probability, statistics are expected

@ Knowledge of finance in general, and asset pricing, in particular is
expected
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Motivating Case Study

@ The motivating case study is portfolio allocation

@ However, the concepts and tools are widely applicable to a range of
settings within Finance

@ We group the concepts into the following functional steps within our
case study

@ Explore - Loading and cleaning data, EDA, etc..

@ Explain - Factor modeling, etc..

© Forecast - Time series models, etc...

@ Protect - Portfolio allocation, risk measurement, etc..
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Housekeeping

@ Throughout the slide deck you will see “Q", which indicates a
question to you, the reader

@ You will also see “A", which indicates the associated answer

o It is generally most efficient to learn this material through active
participation. Whenever you encounter a “Q", be sure to try and
develop your answer before turning the page to the provided “A”
answer

@ | recommend reading through these slides before engaging in
associated coding exercises
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© Regression
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CAPM

Elre — re]l = o+ B(Elrm,e — r])

re—re = a+ B(rme — re) + u

6/64



CAPM

E[rt — rf] = o+ 5(E[rM7t — rf])

re—re=a+ B(rme —re) + up

How do we interpret v and 37
How do we estimate a and (37

How do we determine if 3 =17

How do we use this model?
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By the end of this section you should be able to

Construct a population regression model
Estimate such a model

Assess the overall goodness of fit

Empirically test hypotheses
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@ Regression
Univariate Regression Models

Population Regression Model
Estimation

Interpretation

Inference

Goodness of Fit

Multiple Regression

Dummy Variables

@ Common Problems & Solutions

© Modeling Events
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@ Regression
@ Univariate Regression Models
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@ Regression

@ Population Regression Model
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Y=081+pX+u (1)
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Y=081+pX+u (1)

Dependent Variable or Regressand
Explanatory/Independent Variable or Regressor
Bk | Parameters

u | Disturbance Term

x <
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Why do the disturbance terms exist?
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Why do the disturbance terms exist?

Omission of explanatory variables
Aggregation of variables
Model misspecification

Function misspecification

Measurement error
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Population Regression Function

Assumptions
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Population Regression Function

Assumptions
e E[ul=0
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Population Regression Function

Assumptions
e E[ul=0
o EfulX] = E[u]
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Population Regression Function

Assumptions
e E[ul=0
o EfulX] = E[u]

Population Regression Function

E[Y|X] = 1+ p2X
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Disturbance Terms
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Disturbance Terms
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Disturbance Terms
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Types of Data and Models

Data Types:
@ Cross Sectional
@ Time Series

o Panel
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Types of Data and Models

Data Types:
@ Cross Sectional
@ Time Series
@ Panel
Model Types:
@ X; nonstochastic

@ X; stochastic; drawn randomly and independently from defined
populations

@ X; stochastic; temporally persistent
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Standard OLS Assumptions - Simple Regression

Linear in Parameters

Random Sampling

Sample variation in the explanatory variable
Zero Conditional Mean: E[u|X] =0

Homoscedasticity: Var[u|X] = o?
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@ Regression

@ Estimation
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BB
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Fitted Values

For ease of exposition, assume X and Y are mean zero.

Yi = BXi+uj
Vi BX;
o = Y-V
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Example (OLS Minimization)
© Write the OLS objective function.
@ Construct the associated F.O.C.

© Solve for the OLS estimator.
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Example (OLS Minimization)

W = mBingﬁ,-z (2)
W= mgng(W—ﬂXi)z (3)
88—'2/ = iz:;—zx,-(wﬁx,-)zo (4)
A ()
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OLS Estimators

Definition (OLS Estimators)

Given the model

Yi = a+ 6X; + uj

with standard assumptions, the OLS estimators are

& = Y-pBX
Sia(Yi = V)X = X)
Z7=1 (Xi — X)2

@
|
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OLS Estimators

Definition (OLS Estimators)
Given the model

Yi=a+ 68X+ y;

with standard assumptions, the OLS estimators are
Coefficient  Estimator

Variance
a > A A o2 X?
@ a=Y —pBX ) ) Var(&) = T“—-—Z(§ —’X)2
A " (Yi—Y)(Xi—X o2
8 B ==l e var(B) = stin
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Standard Error of Regression Coefficient

Estimate variance of error:

63:niZZUQ

Coefficient  Estimator Std Error
A=Y — BX N 52 X2

o a=Y - (X s.e.(@) = 7$’Sj%%%i:%?55
3 L (Yi=Y)(Xi—X) A 52

ﬁ /8 - 21;1:1 (X;*)_()Q S.e.(ﬂ) = W
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Under standard assumptions, the OLS estimators are
@ Random Variables

Normally Distributed

Unbiased

Efficient

Consistent
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@ Regression

@ Interpretation
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Model Interpretation

reg ER MRP

Source 23 df us Number of obs = 150
Fi 1, 148) = 1068.62

Model .122240485 1 .122240485 Prob > F = 0.0000
Residual 016929808 148 .000114391 R-squared = 0.8784
Adj R-squared = 0.8775

Total .139170293 149 .000934029 Root HMSE = .0107

ER Coef. std. Err. T [85% Conf. Interwval]

HRF .6354764 .0194396 32.69 .3970614 -6736914
_cons .0201293 .0021349 9.43 .0159104 .0243481
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Model Interpretation

Source =35 df bS]
Model .122240485 1 .122240485
Residual .016929808 148 .000114391
Total 139170293 149 .000934029
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Model Interpretation

Rource =153 df M=
Mode 1 .122240485 1 .122240485
Residual .016929808 148 .000114391
Total .139170293 149 .000934029
ANOVA Table
@ SS = sum of R _
squares o SS Model(ESS) :Z(K — Y)2
o df = degrees @ SS ReS|dua|(RSS):Z 0,2
of freedom o SS Total(TSS)=ESS+RSS=>_(Y; — Y)?
@ MS = mean e Total df=n — 1; Model df=k — 1; Residual
squares df=n—1-(k—1)

(SS/df)
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Model Interpretation

MNurbher of okbs = 150
Fi 1, 143) = 1068.62
Frob > F = 0.0000
E-=quared = D0.8784
bLd) B-squared = 0.8775

Foot M3E

.0107
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Model Interpretation

MNurbher of okbs = 150
Fi 1, 143) = 1068.62
Frob > F = 0.0000
E-=quared = D0.8784
bLd) B-squared = 0.8775
Root M3E = .0107

Overall Model Fit
@ Number of obs = # observations used in the regression
F(1,148)=F-Statistic from test of overall goodness of fit
Prob<F=p-value associated with F-Statistic

Adj.R-squared=R? with penalty for extra predictors

Root MSE=+/MS Residual.

°
°
@ R-squared=Proportion of variance in Y explained by X
°
°
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Interpreting Regression Coefficients

Yi = B+ B2 Xi
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Interpreting Regression Coefficients

Yi = B+ B2 Xi
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Interpreting Regression Coefficients

Yi = B+ B2 Xi

31 Fitted value of Y for X equal to 0
Pa
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Interpreting Regression Coefficients

Yi = 1+ BaX;

B1  Fitted value of Y for X equal to 0
B>  One unit increase in X is associated with a £ unit increase in Y
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Interpreting Regression Coefficients

ER Coef. Std. Err. t F=|t| [85% Conf. Interval]
HRP 6354764 .0194396 32.69 0.000 . 3970614 6738914
_cons .0201293 .0021349 9.43 0.000 .0159104 0243481
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Interpreting Regression Coefficients

ER Coef. Std. Err. t F=|t| [85% Conf. Interval]
HRP 6354764 .0194396 32.69 0.000 . 3970614 6738914
_cons .0201293 .0021349 9.43 0.000 .0159104 0243481
e St.Err: Standard Errors for

ER: Dependent Variable coefficients
MRP: Independent Variable @ t: t-statistics for Hp : 5 = 0
—const: Constant term @ P > |t|: 2 tailed p-vales for null
Coeff MRP(.6354)=(> above
Coeff _cons(.0201)=5; e 95% Conf.Interval: 95%

confidence intervals for coeff.
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@ Regression

@ [nference

35/64



Inference

Consider the simple market model r = By + B1rM + u. Suppose you are
proposing the inclusion of another “factor”, such as Earnings Quality. You
purport r = By + S1r™ + B2EQ + u. How do we test this theory?

Ho: B>=0
Hy: /32#0
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Inference

7 0 5P

~

s,

B39 our hypothesized value of /3
(32: data-based estimates of /3>
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Reject

<

Accept

B

Reject

crit
t

stat
_ t
crit
t
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Inference

Where do we draw the ¢t values? Depends upon
© Degrees of Freedom: df = N — k. As df increase the critical value
decreases towards those for a standard normal distribution.
@ Mistakes:
o Pr[Reject Ho|Ho True] = a=Type 1 Error=Size
o Pr[Accept Hy|Hy False]=Type 2 Error
o Pr[Reject Hy||Ho False] = Power

39/64



Inference

stat
crit crit crit t
t t t

a=0.10,N "a=0.05,N “a=0.01,N
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tcrii _ tcl'il tb‘rif
=005, a=001,N @=0.05.N =001,

In this case, we reject at the 5% level, 4% level, etc..., but fail to
reject at the 1% level.

Rule of thumb: Reject if t-stat > 2.
p-value is the smallest confidence level at which can reject the null.

Reject null if p < «
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Testing Significance of a Regressor

Two Sided Test
Ho : B2 = 33
Hy - B2 # 33
pstat _ P2—F3
] s.e.(Bgl)
tih o =T 1(1-3%)
Reject Hp if
£ > 0
Reject Hy iIf p < «

42/64



Testing Significance of a Regressor

Two Sided Test

One Sided Tests

Ho : Bo = B39
0_62 5(2) Ho : B2 = B9
f11 . /32 ?é /32 . 0
5, 50 Hy : B2 > B,
stat __ 52*ﬁ2 A o
t - A stat __ B2—B;
M B = e
A — [e% . U
fan2= T (1-3) (5, =T H(1-0)
|t§£’ﬁt> 2cln-t Reject Ho if £ > ¢ it
/2,n=2 Reject Hyp if p/2 < «

Reject Hy iIf p < «
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Testing Significance of a Regressor

. reg ER MRP
Source EE] daf H3 Hunber of ohs = 150
Fi 1, 145) = 1068.62
Model .122240485 1 .122240485 Prob > F = 0.0000
Residual .016929808 148 .000114391 R-squared = 0.8784
idj R-squared = 0.8775
Total 2139170293 149 .000934029 Foot HN3E = L0107
ER Coef. Stad. Err. t Prlt| [95% Conf. Interval]
NRF .6354764 .0194396 32.69 0.000 .5970614 -6738914
_cons .0201293 .0021349 9.43 0.000 .0159104 -0243481

The default null hypothesis in most statistical packages is that the
parameter value in question is equal to zero. In this case Hy : 3 =0,
against the two-tailed alternative H, : 5 # 0. Given the low p-value for
MRP, we can reject the null hypothesis at all conventional levels of
significance (10%, 5%, 1%), suggesting that the MRP does indeed
influence returns.
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@ Regression

@ Goodness of Fit
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R? = Coefficient of Determination
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R? = Coefficient of Determination
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R? = Coefficient of Determination

Si-VR = Y- VRe Y e
i=1 i=1 i=1
7SS = ESS+ RSS
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R? = Coefficient of Determination

Si-V? = Y (V- VR Y@
i=1 i=1 i=1
7SS = ESS+ RSS

Definition

n R vav
The Coefficient of Determination is written as R? = —_257182 :32 Or
i=1 I

n ﬁ2

equivalently, R? =1 — m
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The F test of Goodness of Fit

Ho:B2=0 Hi:p2#0
F— (ESS/TSS)/(k—1) _  R?/(k—1)
— (RSS/TSS)/(n—k) — (1—R?2)/(n—k)
where k = # of regressors (intercept and slope).
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Testing Overall Goodness

reg ER MRP
source EE] daf H3 Hunber of obs 150
Fi 1, 148) 1068.62
Model .122240485 1 .122240485 Prob > F = 0.0000
Residual .016929608 148 .000114391 R-scuared = 0.8784
Adj R-squared = 0.8773
Total .139170293 149 .000934029 Root M3E .0107
ER Coef. 3td. Err. t Pxlt| [85% Conf. Interwval]
NRF .6354764 .0194396 32.69 0.000 .5970614 -6738914
_cons .0201293 .0021349 9.43 0.000 .0159104 .0243481
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Testing Overall Goodness of Fit

. reg ER MRP
source EE] daf H3 Hunber of obhs = 150
Fi 1, 145) = 1068.62
Model .122240485 1 .122240485 Prob > F = 0.0000
Residual .016929608 148 .000114391 R-scuared = 0.8784
Adj R-squared = 0.8773
Total .139170293 149 .000934029 Root M3E = .0107
ER Coef. 3td. Err. t Pxlt| [85% Conf. Interwval]
NRF .6354764 .0194396 32.69 0.000 .5970614 -6738914
_cons .0201293 .0021349 9.43 0.000 .0159104 .0243481

@ R2=1- RSS/TSS =1 — .000114391/.000934029 = .8784
@ About 87% of the sample variation in ER is explained by MRP

© Fr_1nk=

ESS/(k—1) _ R?

RSS/(n—k) — (1-R2)/(n—2)

~ 1068.62.

@ Prob > F =0.0000 — Reject Hy : > = 0.
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@ Regression

@ Multiple Regression

48/64



Multiple Regression Model
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Multiple Regression Model

Yi = Bi+4 BoXoi+ B3X3i+ 4 BuXk,i + ui
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Multiple Regression Model

Yi = Bi+4 BoXoi+ B3X3i+ 4 BuXk,i + ui

k
Yi = Bt BiXitu
j=2
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Interpreting Regression Coefficients

Vi = B1 4 BaXoi + B3 Xs,
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Interpreting Regression Coefficients

Vi = B1 4 BaXoi + B3 Xs,
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Interpreting Regression Coefficients

Yi = b1+ BoXoi + B3 X3

p1 Fitted value of Y for all X equal to 0
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Interpreting Regression Coefficients

Yi = b1+ BoXoi + B3 X3

(1 Fitted value of Y for all X equal to 0
B>  One unit increase in X3 is associated with a > unit increase in Y,
holding X3 constant
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Interpreting Regression Coefficients

Yi = b1+ BoXoi + B3 X3

Fitted value of Y for all X equal to 0

One unit increase in X5 is associated with a 32 unit increase in Y,
holding X3 constant

One unit increase in X3 is associated with a 33 unit increase in Y,
holding X5 constant
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ultiple Regressors

Unrestricted Y
Restricted Y

Ho:B2=p3=0
Hi: at least one “=" doesn’t hold
F _ (RSSR—RSSyr)/q
g.n—k RSSur/(N—K)
Reject if p < a
STATA: test Xp X3

RSSur
RSSr

= P14 BoXo + B3 X3 + BaXs + u
=p1+BaXa+u

:Residual Sum of Squares, unrestricted

:Residual Sum of Squares, restricted

:## of restrictions (e.g. number of variables set = zero)

:sample size

:# of variables in unrestricted, including constant
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Standard OLS Assumptions - Multiple Regression

Linear in Parameters

Random Sampling

Sample variation in the explanatory variable
Zero Conditional Mean: E[u|X] =0
Homoscedasticity: Var[u|X] = o2

No Perfect Collinearity
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@ Regression

@ Dummy Variables
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Dummy Variables

re=oa+ B(rme — re) +11Dr +v2(rme — re) X Dy + uy
where D; = 1 during recessions and 0 otherwise.
D=0 E[n]=a+ B(E[rM’tA] —rf)
D=1 E[n]=(&+5)+ (6 +32)(Elrm,e] = rr)

| ElnlElrmd ~ o =0 | aepelil

6} B
a+% B+ 42
41: difference in mean returns between recession and non-recession periods, when
E[rm,:] —rr =0.

Ao: difference in "beta” effect between recession and non-recession periods.

Non-Recession
Recession
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@ Regression

@ Common Problems & Solutions
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Multicollinearity

HPR{EM = By + By HPRYY + BsHPY!YY + u;

Problem: Regressors are (near) linear combinations of each other
Consequence: OLS invalid (Unbiased but std errors too large)

Detection: Correlation among regressors; VIF

Remediation: Drop or combine troublesome regressors
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Heteroscedasticity

wage; = (1 + Paeducation; + u;

@ Problem: Variance of disturbance is not constant
o Consequence: Unbiased, but std errors are incorrect

@ Detection: Plot residual (variance) on combo's of X; BP and White
tests; STATA: estat hettest

@ Remediation: Hetero. robust std errors
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Serial Correlation

re = B1+ BaFe—1+ ug

Problem: Corr(uy,uz—p) # 0
Consequence: Unbiased but std errors are wrong
Detection: Plot residual against each other over time; DW Test

Remediation: Add lagged “Y", or use Serial Correlation robust std
errors
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e Modeling Events
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Motivation ala Campbell, Lo, and MacKinlay

0.025 +

0.02

0.015 +

0.01 1

0.005

CAR
o

-0.005

-0.01

-0.015

Event Time

+* Good News Firms '] No News Firms A

Bad News Firms

o TRl ik ok e e e

R T T T - P T - S S
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Steps for Conducting Event Study

@ Define the event window

@ Identify universe of assets

© Define baseline return model
© Define the estimation window
@ Calculate “abnormal” returns

@ Conduct tests and create visualizations
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Define event and estimation windows

estimation event post-event
window window window
T, T, 0 T, Ty
T

Figure 1. Time line for an event study.
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Define baseline return model

Myriad models are possible. Two of the most common:

Constant Mean Return Model

Ri¢ = pi+mnie n~ N(O,1)

Market Model

Ri+ =i+ BiRmt+nit n~ N(0,1)
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Calculate and Report Abnormal Returns

Abnormal returns

AR/,T = Ri,T = E[R,‘J-‘T]_] VT € {T17 0oag TZ}

where the E[R; ;| T1] is the baseline model for returns using information up
until the beginning of the event window T7. Notice that AR = i

Cumulative Abnormal Returns

| A

CARi(11,72) = Z AR
T=T1
where T1 < 11 < 7 < T,. These cumulative abnormal returns can then
be aggregate across assets for each point in time, or aggregate across time
for a given asset.

v
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