Quantitative Methods in Finance Step 2: Explain

Prof. Mike Aguilar

https:/www.linkedin.com/in/mike-aguilar-econ

Last updated: March 19, 2024

Audience:

- These notes were prepared for Kenan Flagler Business School's Daytime MBA program
- The setting is a 14 session course
- These notes serve as reference materials to complement our in-class work using computational tools

Prerequisites:

- Some knowledge of probability, statistics are expected
- Knowledge of finance in general, and asset pricing, in particular is expected

- The motivating case study is portfolio allocation
- However, the concepts and tools are widely applicable to a range of settings within Finance
- We group the concepts into the following functional steps within our case study
 - Explore Loading and cleaning data, EDA, etc..
 - 2 Explain Factor modeling, etc..
 - Isorecast Time series models, etc...
 - Protect Portfolio allocation, risk measurement, etc..

- Throughout the slide deck you will see "Q", which indicates a question to you, the reader
- You will also see "A", which indicates the associated answer
- It is generally most efficient to learn this material through active participation. Whenever you encounter a "Q", be sure to try and develop your answer before turning the page to the provided "A" answer
- I recommend reading through these slides before engaging in associated coding exercises

$$E[r_t - r_f] = \alpha + \beta(E[r_{M,t} - r_f])$$

$$r_t - r_f = \alpha + \beta(r_{M,t} - r_f) + u_t$$

$$E[r_t - r_f] = \alpha + \beta(E[r_{M,t} - r_f])$$

$$r_t - r_f = \alpha + \beta(r_{M,t} - r_f) + u_t$$

- How do we interpret α and β ?
- How do we estimate α and β ?
- How do we determine if $\beta = 1$?
- How do we use this model?

- Construct a population regression model
- Estimate such a model
- Assess the overall goodness of fit
- Empirically test hypotheses

Regression

- Univariate Regression Models
- Population Regression Model
- Estimation
- Interpretation
- Inference
- Goodness of Fit
- Multiple Regression
- Dummy Variables
- Common Problems & Solutions

2 Modeling Events

Regression

• Univariate Regression Models

- Population Regression Model
- Estimation
- Interpretation
- Inference
- Goodness of Fit
- Multiple Regression
- Dummy Variables
- Common Problems & Solutions

Regression

• Univariate Regression Models

• Population Regression Model

- Estimation
- Interpretation
- Inference
- Goodness of Fit
- Multiple Regression
- Dummy Variables
- Common Problems & Solutions

$$Y = \beta_1 + \beta_2 X + u \tag{1}$$

$$Y = \beta_1 + \beta_2 X + u \tag{1}$$

Y	Dependent Variable or Regressand
Х	Explanatory/Independent Variable or Regressor
β_k	Parameters
и	Disturbance Term

Why do the disturbance terms exist?

- Omission of explanatory variables
- Aggregation of variables
- Model misspecification
- Function misspecification
- Measurement error

• E[u] = 0

- *E*[*u*] = 0
- E[u|X] = E[u]

- E[u] = 0
- E[u|X] = E[u]

Population Regression Function

 $E[Y|X] = \beta_1 + \beta_2 X$

Data Types:

- Cross Sectional
- Time Series
- Panel

Data Types:

- Cross Sectional
- Time Series
- Panel

Model Types:

- X_i nonstochastic
- X_i stochastic; drawn randomly and independently from defined populations
- X_i stochastic; temporally persistent

- Linear in Parameters
- Random Sampling
- Sample variation in the explanatory variable
- Zero Conditional Mean: E[u|X] = 0
- Homoscedasticity: $Var[u|X] = \sigma^2$

Regression

- Univariate Regression Models
- Population Regression Model

Estimation

- Interpretation
- Inference
- Goodness of Fit
- Multiple Regression
- Dummy Variables
- Common Problems & Solutions

21/64

21/64

For ease of exposition, assume X and Y are mean zero.

$$\begin{array}{rcl} Y_i &=& \beta X_i + u_i \\ \hat{Y}_i &=& \hat{\beta} X_i \\ \hat{u}_i &=& Y_i - \hat{Y}_i \end{array}$$

Example (OLS Minimization)

- Write the OLS objective function.
- Onstruct the associated F.O.C.
- Solve for the OLS estimator.

Example (OLS Minimization)

$$W = \min_{\beta} \sum_{i=1}^{n} \hat{u}_{i}^{2}$$
(2)

$$W = \min_{\beta} \sum_{i=1}^{n} (Y_{i} - \beta X_{i})^{2}$$
(3)

$$\frac{\partial W}{\partial \beta} = \sum_{i=1}^{n} -2X_{i}(Y_{i}\hat{\beta}X_{i}) = 0$$
(4)

$$\hat{\beta} = \frac{\sum_{i=1}^{n} X_{i}Y_{i}}{\sum_{i=1}^{n} X_{i}^{2}}$$
(5)

Definition (OLS Estimators)

Given the model

$$Y_i = \alpha + \beta X_i + u_i$$

with standard assumptions, the OLS estimators are

$$\hat{\alpha} = \bar{Y} - \hat{\beta}\bar{X}$$
$$\hat{\beta} = \frac{\sum_{i=1}^{n} (Y_i - \bar{Y})(X_i - \bar{X})}{\sum_{i=1}^{n} (X_i - \bar{X})^2}$$
Definition (OLS Estimators)

Given the model

$$Y_i = \alpha + \beta X_i + u_i$$

with standard assumptions, the OLS estimators are
CoefficientEstimatorVariance α $\hat{\alpha} = \bar{Y} - \hat{\beta}\bar{X}$ $Var(\hat{\alpha}) = \frac{\sigma_u^2}{n} \frac{\sum X_i^2}{\sum (X_i - \bar{X})^2}$ β $\hat{\beta} = \frac{\sum_{i=1}^{n} (Y_i - \bar{Y})(X_i - \bar{X})}{\sum_{i=1}^{n} (X_i - \bar{X})^2}$ $Var(\hat{\beta}) = \frac{\sigma_u^2}{\sum (X_i - \bar{X})^2}$

Estimate variance of error:

$$\hat{\sigma}_u^2 = \frac{1}{n-2} \sum u^2$$

Coefficient	Estimator	Std Error
α	$\hat{lpha} = ar{Y} - \hat{eta}ar{X}$	$s.e.(\hat{lpha}) = \sqrt{rac{\hat{\sigma}_u^2}{n} rac{\sum X_i^2}{\sum (X_i - \bar{X})^2}}$
β	$\hat{\beta} = rac{\sum_{i=1}^{n} (Y_i - \bar{Y})(X_i - \bar{X})}{\sum_{i=1}^{n} (X_i - \bar{X})^2}$	$s.e.(\hat{eta}) = \sqrt{rac{\hat{\sigma}_u^2}{\sum (X_i - ar{X})^2}}$

Under standard assumptions, the $\ensuremath{\mathsf{OLS}}$ estimators are

- Random Variables
- Normally Distributed
- Unbiased
- Efficient
- Consistent

Outline

Regression

- Univariate Regression Models
- Population Regression Model
- Estimation

Interpretation

- Inference
- Goodness of Fit
- Multiple Regression
- Dummy Variables
- Common Problems & Solutions

. reg ER MRP

Source	55	df	MS		Number of obs	= 150
					F(1, 148)	= 1068.62
Model	.122240485	1.1	22240485		Prob > F	= 0.0000
Residual	.016929808	148 .0	00114391		R-squared	= 0.8784
					Adj R-squared	= 0.8775
Total	.139170293	149 .0	00934029		Root MSE	= .0107
ER	Coef.	Std. Err	. t	P> t	[95% Conf.	Interval]
MRP _cons	.6354764 .0201293	.0194396 .0021349	5 32.69 9.43	0.000 0.000	.5970614 .0159104	.6738914 .0243481

Source	55	df	MS
Model Residual	.122240485 .016929808	1 148	.122240485 .000114391
Total	.139170293	149	.000934029

Source	55	df	MS
Model Residual	.122240485 .016929808	1 148	.122240485 .000114391
Total	.139170293	149	.000934029

ANOVA Table

- SS = sum of squares
- df = degrees of freedom
- MS = mean squares (SS/df)

- SS Model(ESS) $= \sum (\hat{Y}_i \bar{Y})^2$
- SS Residual(RSS)= $\sum \hat{u}_i^2$
- SS Total(TSS)=ESS+RSS= $\sum (Y_i \bar{Y})^2$
- Total df=n-1; Model df=k-1; Residual df=n-1-(k-1)

Number of obs	=	150
F(1, 148)	=	1068.62
Prob > F	=	0.0000
R-squared	=	0.8784
Adj R-squared	=	0.8775
Root MSE	=	.0107

Number of obs	=	150
F(1, 148)	=	1068.62
Prob > F	=	0.0000
R-squared	=	0.8784
Adj R-squared	=	0.8775
Root MSE	=	.0107

Overall Model Fit

- Number of obs = # observations used in the regression
- F(1,148)=F-Statistic from test of overall goodness of fit
- Prob<F=p-value associated with F-Statistic
- R-squared=Proportion of variance in Y explained by X
- Adj.R-squared $= R^2$ with penalty for extra predictors
- Root MSE= \sqrt{MS} Residual.

Interpreting Regression Coefficients

$$\hat{Y}_i = \hat{\beta}_1 + \hat{\beta}_2 X_i$$

Interpreting Regression Coefficients

$$\hat{Y}_i = \hat{\beta}_1 + \hat{\beta}_2 X_i$$

$$\hat{Y}_i = \hat{\beta}_1 + \hat{\beta}_2 X_i$$

Fitted value of Y for X equal to 0

$$\hat{Y}_i = \hat{\beta}_1 + \hat{\beta}_2 X_i$$

$\hat{\beta}_1$ Fitted value of Y for X equal to 0 $\hat{\beta}_2$ One unit increase in X is associated with a $\hat{\beta}_2$ unit increase in Y

Interpreting Regression Coefficients

ER	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
MRP	.6354764	.0194396	32.69	0.000	.5970614	.6738914
_cons	.0201293	.0021349	9.43	0.000	.0159104	.0243481

ER	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
MRP	.6354764	.0194396	32.69	0.000	.5970614	.6738914
_cons	.0201293	.0021349	9.43	0.000	.0159104	.0243481

- ER: Dependent Variable
- MRP: Independent Variable
- _const: Constant term
- Coeff MRP(.6354)= $\hat{\beta}_2$
- Coeff _cons(.0201)= $\hat{\beta}_1$

- St.Err: Standard Errors for coefficients
- t: t-statistics for H_0 : $\beta_i = 0$
- *P* > |*t*|: 2 tailed p-vales for null above
- 95% Conf.Interval: 95% confidence intervals for coeff.

Outline

Regression

- Univariate Regression Models
- Population Regression Model
- Estimation
- Interpretation

Inference

- Goodness of Fit
- Multiple Regression
- Dummy Variables
- Common Problems & Solutions

Consider the simple market model $r = \beta_0 + \beta_1 r^M + u$. Suppose you are proposing the inclusion of another "factor", such as Earnings Quality. You purport $r = \beta_0 + \beta_1 r^M + \beta_2 EQ + u$. How do we test this theory?

$$H_0: \quad \beta_2 = 0$$
$$H_a: \quad \beta_2 \neq 0$$

 $\beta_2^0 :$ our hypothesized value of β_2 $\tilde{\beta}^2 :$ data-based estimates of β_2

Inference

Where do we draw the t^{crit} values? Depends upon

- Degrees of Freedom: df = N k. As df increase the critical value decreases towards those for a standard normal distribution.
- Ø Mistakes:
 - $Pr[Reject H_0|H_0 True] = \alpha = Type 1 Error = Size$
 - *Pr*[*Accept H*₀|*H*₀ *False*]=Type 2 Error
 - $Pr[Reject H_0 || H_0 False] = Power$

- In this case, we reject at the 5% level, 4% level, etc..., but fail to reject at the 1% level.
- Rule of thumb: Reject if t-stat > 2.
- p-value is the smallest confidence level at which can reject the null.
- Reject null if $p < \alpha$

$$\begin{array}{l} \underline{\text{Two Sided Test}} \\ H_0: \beta_2 = \beta_2^0 \\ H_1: \beta_2 \neq \beta_2^0 \\ t^{stat} = \frac{\hat{\beta}_2 - \beta_2^0}{s.e.(\hat{\beta}_2)} \\ t^{crit}_{\alpha,n-2} = T^{-1}(1 - \frac{\alpha}{2}) \\ \text{Reject } H_0 \text{ if} \\ |t^{stat}| > t^{crit}_{\alpha/2,n-2} \\ \text{Reject } H_0 \text{ if } p < \alpha \end{array}$$

$$\begin{array}{l} \underline{\text{Two Sided Test}} \\ \overline{H_0: \beta_2 = \beta_2^0} \\ H_1: \beta_2 \neq \beta_2^0 \\ t^{stat} = \frac{\hat{\beta}_2 - \beta_2^0}{s.e.(\hat{\beta}_2)} \\ t^{crit}_{\alpha,n-2} = T^{-1}(1 - \frac{\alpha}{2}) \\ \text{Reject } H_0 \text{ if} \\ |t^{stat}| > t^{crit}_{\alpha/2,n-2} \\ \text{Reject } H_0 \text{ if } p < \alpha \end{array}$$

$$\begin{array}{l} \underline{\text{One Sided Tests}}\\ H_0: \beta_2 = \beta_2^0\\ H_1: \beta_2 > \beta_2^0\\ t^{stat} = \frac{\beta_2 - \beta_2^0}{s.e.(\beta_2)}\\ t^{crit}_{\alpha,n-2} = T^{-1}(1-\alpha)\\ \text{Reject } H_0 \text{ if } t^{stat} > t^{crit}_{\alpha,n-2}\\ \text{Reject } H_0 \text{ if } p/2 < \alpha \end{array}$$

. reg ER MRP

Source	55	df	MS		Number of obs	= 150 = 1068_62
Model Residual	.122240485 .016929808	1 148	.122240485 .000114391		Prob > F R-squared	= 0.0000 = 0.8784
Total	.139170293	149	.000934029		Adj R-squared Root MSE	= 0.8775 = .0107
ER	Coef.	Std. H	Err. t	P> t	[95% Conf.	Interval]
MRP _cons	.6354764 .0201293	.01943 .00213	396 32.69 349 9.43	0.000 0.000	.5970614 .0159104	.6738914 .0243481

The default null hypothesis in most statistical packages is that the parameter value in question is equal to zero. In this case $H_0: \beta = 0$, against the two-tailed alternative $H_a: \beta \neq 0$. Given the low p-value for MRP, we can reject the null hypothesis at all conventional levels of significance (10%, 5%, 1%), suggesting that the MRP does indeed influence returns.

Outline

Regression

- Univariate Regression Models
- Population Regression Model
- Estimation
- Interpretation
- Inference
- Goodness of Fit
- Multiple Regression
- Dummy Variables
- Common Problems & Solutions

$$\sum_{i=1}^{n} (Y_i - \bar{Y})^2 = \sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2 + \sum_{i=1}^{n} \hat{u}_i^2$$

$$\sum_{i=1}^{n} (Y_i - \bar{Y})^2 = \sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2 + \sum_{i=1}^{n} \hat{u}_i^2$$

TSS = ESS + RSS

$$\sum_{i=1}^{n} (Y_i - \bar{Y})^2 = \sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2 + \sum_{i=1}^{n} \hat{u}_i^2$$

$$TSS = ESS + RSS$$

Definition

The Coefficient of Determination is written as $R^2 = \frac{\sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2}{\sum_{i=1}^{n} (Y_i - \bar{Y})^2}$. Or equivalently, $R^2 = 1 - \frac{\sum_{i=1}^{n} \hat{u}_i^2}{\sum_{i=1}^{n} (Y_i - \bar{Y})^2}$.

$$\begin{array}{l} H_0: \beta_2 = 0 \quad H_1: \beta_2 \neq 0 \\ F = \frac{(ESS/TSS)/(k-1)}{(RSS/TSS)/(n-k)} = \frac{R^2/(k-1)}{(1-R^2)/(n-k)} \\ \text{where } k = \# \text{ of regressors (intercept and slope).} \end{array}$$

Testing Overall Goodness of Fit

. reg ER MRP

Source	55	df	MS		Number of obs	= 150
					F(1, 148)	= 1068.62
Model	.122240485	1	.122240485		Prob > F	= 0.0000
Residual	.016929808	148	.000114391		R-squared	= 0.8784
					Adj R-squared	= 0.8775
Total	.139170293	149	.000934029		Root MSE	= .0107
ER	Coef.	Std.	Err. t	P> t	[95% Conf.	Interval]
MRP _cons	.6354764 .0201293	.0194 .0021	396 32.69 349 9.43	0.000 0.000	.5970614 .0159104	.6738914 .0243481

. reg ER MRP

Source	SS	df	MS		Number of obs	= 150
					F(1, 148)	= 1068.62
Model	.122240485	1.1	22240485		Prob > F	= 0.0000
Residual	.016929808	148 .0	00114391		R-squared	= 0.8784
					Adj R-squared	= 0.8775
Total	.139170293	149 .00	00934029		Root MSE	= .0107
ER	Coef.	Std. Err	. t	P> t	[95% Conf.	Interval]
MRP _ ^{cons}	.6354764 .0201293	.0194396 .0021349	32.69 9.43	0.000 0.000	.5970614 .0159104	.6738914 .0243481

- $R^2 = 1 RSS/TSS = 1 .000114391/.000934029 \approx .8784$
- About 87% of the sample variation in ER is explained by MRP

•
$$F_{k-1,n-k} = \frac{ESS/(k-1)}{RSS/(n-k)} = \frac{R^2}{(1-R^2)/(n-2)} \approx 1068.62.$$

• $Prob > F = 0.0000 \rightarrow \text{Reject } H_0 : \beta_2 = 0.$

Outline

Regression

- Univariate Regression Models
- Population Regression Model
- Estimation
- Interpretation
- Inference
- Goodness of Fit
- Multiple Regression
- Dummy Variables
- Common Problems & Solutions

Multiple Regression Model

$Y_i = \beta_1 + \beta_2 X_{2,i} + \beta_3 X_{3,i} + \dots + \beta_k X_{k,i} + u_i$
$$Y_i = \beta_1 + \beta_2 X_{2,i} + \beta_3 X_{3,i} + \dots + \beta_k X_{k,i} + u_i$$

$$Y_i = \beta_1 + \sum_{j=2}^k \beta_j X_{j,i} + u_i$$

Interpreting Regression Coefficients

$$\hat{Y}_i = \hat{\beta}_1 + \hat{\beta}_2 X_{2,i} + \hat{\beta}_3 X_{3,i}$$

Interpreting Regression Coefficients

$$\hat{Y}_i = \hat{\beta}_1 + \hat{\beta}_2 X_{2,i} + \hat{\beta}_3 X_{3,i}$$

Interpreting Regression Coefficients

$$\hat{Y}_i = \hat{\beta}_1 + \hat{\beta}_2 X_{2,i} + \hat{\beta}_3 X_{3,i}$$

 $\hat{\beta}_3$

$$\hat{Y}_i = \hat{\beta}_1 + \hat{\beta}_2 X_{2,i} + \hat{\beta}_3 X_{3,i}$$

- $\hat{\beta}_1$ Fitted value of Y for all X equal to 0 $\hat{\beta}_2$ One unit increase in X_2 is associated v
 - One unit increase in X_2 is associated with a $\hat{\beta}_2$ unit increase in Y, holding X_3 constant

 $\hat{\beta}_3$

$$\hat{Y}_i = \hat{\beta}_1 + \hat{\beta}_2 X_{2,i} + \hat{\beta}_3 X_{3,i}$$

- $\hat{\beta}_1 \\ \hat{\beta}_2$
 - Fitted value of Y for all X equal to 0
 - $\hat{\beta}_2$ One unit increase in X_2 is associated with a $\hat{\beta}_2$ unit increase in Y, holding X_3 constant
- $\hat{\beta}_3$ One unit increase in X_3 is associated with a $\hat{\beta}_3$ unit increase in Y, holding X_2 constant

Unrestricted $Y = \beta_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + u$ Restricted $Y = \beta_1 + \beta_4 X_4 + u$

 $\begin{array}{l} H_0: \beta_2 = \beta_3 = 0 \\ H_1: \text{ at least one "=" doesn't hold } \\ F_{q,n-k} = \frac{(RSS_R - RSS_{UR})/q}{RSS_{UR}/(N-K)} \\ \text{Reject if } p < \alpha \\ \text{STATA: test } X_2 \; X_3 \end{array}$

RSS_{UR} :Residual Sum of Squares, unrestricted

- RSS_R :Residual Sum of Squares, restricted
 - q:# of restrictions (e.g. number of variables set = zero)
 - n :sample size
 - k :# of variables in unrestricted, including constant

- Linear in Parameters
- Random Sampling
- Sample variation in the explanatory variable
- Zero Conditional Mean: E[u|X] = 0
- Homoscedasticity: $Var[u|X] = \sigma^2$
- No Perfect Collinearity

Outline

Regression

- Univariate Regression Models
- Population Regression Model
- Estimation
- Interpretation
- Inference
- Goodness of Fit
- Multiple Regression
- Dummy Variables
- Common Problems & Solutions

$$r_t = \alpha + \beta (r_{M,t} - r_f) + \gamma_1 D_t + \gamma_2 (r_{M,t} - r_f) \times D_t + u_t$$

where $D_t = 1$ during recessions and 0 otherwise. D = 0 $E[r_t] = \hat{\alpha} + \hat{\beta}(E[r_{M,t}] - r_f)$ D = 1 $E[r_t] = (\hat{\alpha} + \hat{\gamma}_1) + (\hat{\beta} + \hat{\gamma}_2)(E[r_{M,t}] - r_f)$

	$E[r_t E[r_{M,t}]-r_f=0]$	$\frac{\partial E[r_t]}{\partial E[r_{M,t}] - r_f}$
Non-Recession	\hat{lpha}	\hat{eta}
Recession	$\hat{\alpha} + \hat{\gamma}_1$	$\hat{eta} + \hat{\gamma}_2$

 $\hat{\gamma}_1$: difference in mean returns between recession and non-recession periods, when $E[r_{M,t}]-r_f=0.$

 $\hat{\gamma}_2$: difference in "beta" effect between recession and non-recession periods.

Outline

Regression

- Univariate Regression Models
- Population Regression Model
- Estimation
- Interpretation
- Inference
- Goodness of Fit
- Multiple Regression
- Dummy Variables
- Common Problems & Solutions

$$HPR_{t}^{IBM} = \beta_{1} + \beta_{2}HPR_{t}^{IVV} + \beta_{3}HPY_{t}^{IVV} + u_{t}$$

- Problem: Regressors are (near) linear combinations of each other
- Consequence: OLS invalid (Unbiased but std errors too large)
- Detection: Correlation among regressors; VIF
- Remediation: Drop or combine troublesome regressors

 $wage_i = \beta_1 + \beta_2 education_i + u_i$

- Problem: Variance of disturbance is not constant
- Consequence: Unbiased, but std errors are incorrect
- Detection: Plot residual (variance) on combo's of X; BP and White tests; STATA: estat hettest
- Remediation: Hetero. robust std errors

$$r_t = \beta_1 + \beta_2 F_{t-1} + u_t$$

- Problem: $Corr(u_t, u_{t-h}) \neq 0$
- Consequence: Unbiased but std errors are wrong
- Detection: Plot residual against each other over time; DW Test
- Remediation: Add lagged "Y", or use Serial Correlation robust std errors

Motivation ala Campbell, Lo, and MacKinlay

Figure 2a. Blot of sumulative abnormal return for corning announcements from event day, 20 to event

60/64

- Define the event window
- Identify universe of assets
- Oefine baseline return model
- Oefine the estimation window
- Oalculate "abnormal" returns
- Onduct tests and create visualizations

Figure 1. Time line for an event study.

Myriad models are possible. Two of the most common:

Constant Mean Return Model

$$R_{i,t} = \mu_i + \eta_{i,t} \quad \eta \sim N(0,1)$$

Market Model

$$R_{i,t} = \alpha_i + \beta_i R_{m,t} + \eta_{i,t} \quad \eta \sim N(0,1)$$

Abnormal returns

$$AR_{i,\tau} = R_{i,\tau} - E[R_{i,\tau}|T_1] \;\; \forall \tau \in \{T_1, ..., T_2\}$$

where the $E[R_{i,\tau}|T_1]$ is the baseline model for returns using information up until the beginning of the event window T_1 . Notice that $\hat{AR} = \hat{\eta}$

Cumulative Abnormal Returns

$$CAR_i(au_1, au_2) = \sum_{ au= au_1}^{ au_2} AR_{i, au}$$

where $T_1 < \tau_1 \leq \tau_2 \leq T_2$. These cumulative abnormal returns can then be aggregate across assets for each point in time, or aggregate across time for a given asset.