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Audience and Prerequisites

Audience:

These notes were prepared for Kenan Flagler Business School’s
Daytime MBA program

The setting is a 14 session course

These notes serve as reference materials to complement our in-class
work using computational tools

Prerequisites:

Some knowledge of probability, statistics are expected

Knowledge of finance in general, and asset pricing, in particular is
expected
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Motivating Case Study

The motivating case study is portfolio allocation

However, the concepts and tools are widely applicable to a range of
settings within Finance

We group the concepts into the following functional steps within our
case study

1 Explore - Loading and cleaning data, EDA, etc..
2 Explain - Factor modeling, etc..
3 Forecast - Time series models, etc...
4 Protect - Portfolio allocation, risk measurement, etc..
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Housekeeping

Throughout the slide deck you will see “Q”, which indicates a
question to you, the reader

You will also see “A”, which indicates the associated answer

It is generally most efficient to learn this material through active
participation. Whenever you encounter a “Q”, be sure to try and
develop your answer before turning the page to the provided “A”
answer

I recommend reading through these slides before engaging in
associated coding exercises
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Outline

1 Regression

2 Modeling Events
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CAPM

E [rt − rf ] = α + β(E [rM,t − rf ])

rt − rf = α + β(rM,t − rf ) + ut

How do we interpret α and β?

How do we estimate α and β?

How do we determine if β = 1?

How do we use this model?
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By the end of this section you should be able to

Construct a population regression model

Estimate such a model

Assess the overall goodness of fit

Empirically test hypotheses
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Y = β1 + β2X + u (1)

Y Dependent Variable or Regressand
X Explanatory/Independent Variable or Regressor
βk Parameters
u Disturbance Term
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Why do the disturbance terms exist?

Omission of explanatory variables

Aggregation of variables

Model misspecification

Function misspecification

Measurement error
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Population Regression Function

Assumptions

E [u] = 0

E [u|X ] = E [u]

Population Regression Function

E [Y |X ] = β1 + β2X
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Disturbance Terms
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Disturbance Terms
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Disturbance Terms
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Disturbance Terms
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Types of Data and Models

Data Types:

Cross Sectional

Time Series

Panel

Model Types:

Xi nonstochastic

Xi stochastic; drawn randomly and independently from defined
populations

Xi stochastic; temporally persistent
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Standard OLS Assumptions - Simple Regression

Linear in Parameters

Random Sampling

Sample variation in the explanatory variable

Zero Conditional Mean: E [u|X ] = 0

Homoscedasticity: Var [u|X ] = σ2
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Fitted Values

For ease of exposition, assume X and Y are mean zero.

Yi = βXi + ui

Ŷi = β̂Xi

ûi = Yi − Ŷi
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Example (OLS Minimization)

1 Write the OLS objective function.

2 Construct the associated F.O.C.

3 Solve for the OLS estimator.
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Example (OLS Minimization)

W = min
β

n∑
i=1

û2
i (2)

W = min
β

n∑
i=1

(Yi − βXi )
2 (3)

∂W

∂β
=

n∑
i=1

−2Xi (Yi β̂Xi ) = 0 (4)

β̂ =

∑n
i=1 XiYi∑n
i=1 X

2
i

(5)
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OLS Estimators

Definition (OLS Estimators)

Given the model
Yi = α + βXi + ui

with standard assumptions, the OLS estimators are

α̂ = Ȳ − β̂X̄

β̂ =

∑n
i=1(Yi − Ȳ )(Xi − X̄ )∑n

i=1 (Xi − X̄ )2
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OLS Estimators

Definition (OLS Estimators)

Given the model
Yi = α + βXi + ui

with standard assumptions, the OLS estimators are
Coefficient Estimator Variance

α α̂ = Ȳ − β̂X̄ Var(α̂) = σ2
u
n

∑
X 2
i∑

(Xi−X̄ )2

β β̂ =
∑n

i=1(Yi−Ȳ )(Xi−X̄ )∑n
i=1 (Xi−X̄ )2 Var(β̂) = σ2

u∑
(Xi−X̄ )2
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Standard Error of Regression Coefficient

Estimate variance of error:

σ̂2
u =

1

n − 2

∑
u2

Coefficient Estimator Std Error

α α̂ = Ȳ − β̂X̄ s.e.(α̂) =

√
σ̂2
u
n

∑
X 2
i∑

(Xi−X̄ )2

β β̂ =
∑n

i=1(Yi−Ȳ )(Xi−X̄ )∑n
i=1 (Xi−X̄ )2 s.e.(β̂) =

√
σ̂2
u∑

(Xi−X̄ )2
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Under standard assumptions, the OLS estimators are

Random Variables

Normally Distributed

Unbiased

Efficient

Consistent
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Model Interpretation
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Model Interpretation

ANOVA Table

SS = sum of
squares

df = degrees
of freedom

MS = mean
squares
(SS/df)

SS Model(ESS) =
∑

(Ŷi − Ȳ )2

SS Residual(RSS)=
∑

û2
i

SS Total(TSS)=ESS+RSS=
∑

(Yi − Ȳ )2

Total df=n− 1; Model df=k − 1; Residual
df=n − 1− (k − 1)
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Model Interpretation

Overall Model Fit

Number of obs = # observations used in the regression

F(1,148)=F-Statistic from test of overall goodness of fit

Prob<F=p-value associated with F-Statistic

R-squared=Proportion of variance in Y explained by X

Adj.R-squared=R2 with penalty for extra predictors

Root MSE=
√

MS Residual.
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Interpreting Regression Coefficients

Ŷi = β̂1 + β̂2Xi

β̂1

Fitted value of Y for X equal to 0

β̂2

One unit increase in X is associated with a β̂2 unit increase in Y
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Interpreting Regression Coefficients

ER: Dependent Variable

MRP: Independent Variable

const: Constant term

Coeff MRP(.6354)=β̂2

Coeff cons(.0201)=β̂1

St.Err: Standard Errors for
coefficients

t: t-statistics for H0 : βi = 0

P > |t|: 2 tailed p-vales for null
above

95% Conf.Interval: 95%
confidence intervals for coeff.
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Inference

Consider the simple market model r = β0 + β1r
M + u. Suppose you are

proposing the inclusion of another “factor”, such as Earnings Quality. You
purport r = β0 + β1r

M + β2EQ + u. How do we test this theory?

H0 : β2 = 0

Ha : β2 6= 0
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Inference

β0
2 : our hypothesized value of β2

β̃2: data-based estimates of β2
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Inference
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Inference

Where do we draw the tcrit values? Depends upon

1 Degrees of Freedom: df = N − k . As df increase the critical value
decreases towards those for a standard normal distribution.

2 Mistakes:

Pr [Reject H0|H0 True] = α=Type 1 Error=Size
Pr [Accept H0|H0 False]=Type 2 Error
Pr [Reject H0‖H0 False] = Power
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Inference
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Inference

In this case, we reject at the 5% level, 4% level, etc..., but fail to
reject at the 1% level.

Rule of thumb: Reject if t-stat > 2.

p-value is the smallest confidence level at which can reject the null.

Reject null if p < α
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Testing Significance of a Regressor

Two Sided Test
H0 : β2 = β0

2

H1 : β2 6= β0
2

tstat =
β̂2−β0

2

s.e.(β̂2)

tcritα,n−2 = T−1(1− α
2 )

Reject H0 if
|tstat | > tcritα/2,n−2
Reject H0 if p < α

One Sided Tests
H0 : β2 = β0

2

H1 : β2 > β0
2

tstat =
β̂2−β0

2
s.e.(β2)

tcritα,n−2 = T−1(1− α)

Reject H0 if tstat > tcritα,n−2

Reject H0 if p/2 < α
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Testing Significance of a Regressor

The default null hypothesis in most statistical packages is that the
parameter value in question is equal to zero. In this case H0 : β = 0,
against the two-tailed alternative Ha : β 6= 0. Given the low p-value for
MRP, we can reject the null hypothesis at all conventional levels of
significance (10%, 5%, 1%), suggesting that the MRP does indeed
influence returns.
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R2 ≡ Coefficient of Determination

n∑
i=1

(Yi − Ȳ )2 =
n∑

i=1

(Ŷi − Ȳ )2 +
n∑

i=1

û2
i

TSS = ESS + RSS

Definition

The Coefficient of Determination is written as R2 =
∑n

i=1(Ŷi−Ȳ )2∑n
i=1(Yi−Ȳ )2 . Or

equivalently, R2 = 1−
∑n

i=1 û
2
i∑n

i=1(Yi−Ȳ )2 .
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i=1(Ŷi−Ȳ )2∑n
i=1(Yi−Ȳ )2 . Or
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The F test of Goodness of Fit

H0 : β2 = 0 H1 : β2 6= 0

F = (ESS/TSS)/(k−1)
(RSS/TSS)/(n−k) = R2/(k−1)

(1−R2)/(n−k)

where k = # of regressors (intercept and slope).
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Testing Overall Goodness of Fit

R2 = 1− RSS/TSS = 1− .000114391/.000934029 ≈ .8784

About 87% of the sample variation in ER is explained by MRP

Fk−1,n−k = ESS/(k−1)
RSS/(n−k) = R2

(1−R2)/(n−2)
≈ 1068.62.

Prob > F = 0.0000 → Reject H0 : β2 = 0.
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Multiple Regression Model

Yi = β1 + β2X2,i + β3X3,i + · · ·+ βkXk,i + ui

Yi = β1 +
k∑

j=2

βjXj ,i + ui
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Interpreting Regression Coefficients

Ŷi = β̂1 + β̂2X2,i + β̂3X3,i

β̂1

Fitted value of Y for all X equal to 0

β̂2

One unit increase in X2 is associated with a β̂2 unit increase in Y ,
holding X3 constant

β̂3

One unit increase in X3 is associated with a β̂3 unit increase in Y ,
holding X2 constant
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Inference on Multiple Regressors

Unrestricted Y = β1 + β2X2 + β3X3 + β4X4 + u

Restricted Y = β1 + β4X4 + u

H0 : β2 = β3 = 0
H1: at least one “=” doesn’t hold

Fq,n−k = (RSSR−RSSUR )/q
RSSUR/(N−K)

Reject if p < α
STATA: test X2 X3

RSSUR :Residual Sum of Squares, unrestricted

RSSR :Residual Sum of Squares, restricted

q :# of restrictions (e.g. number of variables set = zero)

n :sample size

k :# of variables in unrestricted, including constant
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Standard OLS Assumptions - Multiple Regression

Linear in Parameters

Random Sampling

Sample variation in the explanatory variable

Zero Conditional Mean: E [u|X ] = 0

Homoscedasticity: Var [u|X ] = σ2

No Perfect Collinearity
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Dummy Variables

rt = α + β(rM,t − rf ) + γ1Dt + γ2(rM,t − rf )× Dt + ut

where Dt = 1 during recessions and 0 otherwise.
D = 0 E [rt ] = α̂ + β̂(E [rM,t ]− rf )

D = 1 E [rt ] = (α̂ + γ̂1) + (β̂ + γ̂2)(E [rM,t ]− rf )

E [rt |E [rM,t ]− rf = 0] ∂E [rt ]
∂E [rM,t ]−rf

Non-Recession α̂ β̂

Recession α̂ + γ̂1 β̂ + γ̂2

γ̂1: difference in mean returns between recession and non-recession periods, when
E [rM,t ] − rf = 0.
γ̂2: difference in ”beta” effect between recession and non-recession periods.
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Multicollinearity

HPR IBM
t = β1 + β2HPR

IVV
t + β3HPY

IVV
t + ut

Problem: Regressors are (near) linear combinations of each other

Consequence: OLS invalid (Unbiased but std errors too large)

Detection: Correlation among regressors; VIF

Remediation: Drop or combine troublesome regressors
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Heteroscedasticity

wagei = β1 + β2educationi + ui

Problem: Variance of disturbance is not constant

Consequence: Unbiased, but std errors are incorrect

Detection: Plot residual (variance) on combo’s of X; BP and White
tests; STATA: estat hettest

Remediation: Hetero. robust std errors
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Serial Correlation

rt = β1 + β2Ft−1 + ut

Problem: Corr(ut , ut−h) 6= 0

Consequence: Unbiased but std errors are wrong

Detection: Plot residual against each other over time; DW Test

Remediation: Add lagged “Y”, or use Serial Correlation robust std
errors
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Motivation ala Campbell, Lo, and MacKinlay

60/64



Steps for Conducting Event Study

1 Define the event window

2 Identify universe of assets

3 Define baseline return model

4 Define the estimation window

5 Calculate “abnormal” returns

6 Conduct tests and create visualizations
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Define event and estimation windows
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Define baseline return model

Myriad models are possible. Two of the most common:

Constant Mean Return Model

Ri ,t = µi + ηi ,t η ∼ N(0, 1)

Market Model

Ri ,t = αi + βiRm,t + ηi ,t η ∼ N(0, 1)
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Calculate and Report Abnormal Returns

Abnormal returns

ARi ,τ = Ri ,τ − E [Ri ,τ |T1] ∀τ ∈ {T1, ...,T2}

where the E [Ri ,τ |T1] is the baseline model for returns using information up

until the beginning of the event window T1. Notice that ÂR = η̂

Cumulative Abnormal Returns

CARi (τ1, τ2) =

τ2∑
τ=τ1

ARi ,τ

where T1 < τ1 ≤ τ2 ≤ T2. These cumulative abnormal returns can then
be aggregate across assets for each point in time, or aggregate across time
for a given asset.
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